Continuous and low-energy 125I seed irradiation changes DNA methyltransferases expression patterns and inhibits pancreatic cancer tumor growth

نویسندگان

  • Jian-xia Ma
  • Zhen-dong Jin
  • Pei-ren Si
  • Yan Liu
  • Zheng Lu
  • Hong-yu Wu
  • Xue Pan
  • Luo-wei Wang
  • Yan-fang Gong
  • Jun Gao
  • Li Zhao-shen
چکیده

BACKGROUND Iodine 125 (125I) seed irradiation is an effective treatment for unresectable pancreatic cancers. However, the radiobiological mechanisms underlying brachytherapy remain unclear. Therefore, we investigated the influence of continuous and low-energy 125I irradiation on apoptosis, expression of DNA methyltransferases (DNMTs) and cell growth in pancreatic cancers. MATERIALS AND METHODS For in vitro 125I seed irradiation, SW-1990 cells were divided into three groups: control (0 Gy), 2 Gy, and 4 Gy. To create an animal model of pancreatic cancer, the SW 1990 cells were surgically implanted into the mouse pancreas. At 10 d post-implantation, the 30 mice with pancreatic cancer underwent 125I seed implantation and were separated into three groups: 0 Gy, 2 Gy, and 4 Gy group. At 48 or 72 h after irradiation, apoptosis was detected by flow cytometry; changes in DNMTs mRNA and protein expression were assessed by real-time PCR and western blotting analysis, respectively. At 28 d after 125I seed implantation, in vivo apoptosis was evaluated with TUNEL staining, while DNMTs protein expression was detected with immunohistochemical staining. The tumor volume was measured 0 and 28 d after 125I seed implantation. RESULTS 125I seed irradiation induced significant apoptosis, especially at 4 Gy. DNMT1 and DNMT3b mRNA and protein expression were substantially higher in the 2 Gy group than in the control group. Conversely, the 4 Gy cell group exhibited significantly decreased DNMT3b mRNA and protein expression relative to the control group. There were substantially more TUNEL positive in the 125I seed implantation treatment group than in the control group, especially at 4 Gy. The 4 Gy seed implantation group showed weaker staining for DNMT1 and DNMT3b protein relative to the control group. Consequently, 125I seed implantation inhibited cancer growth and reduced cancer volume. CONCLUSION 125I seed implantation kills pancreatic cancer cells, especially at 4 Gy. 125I-induced apoptosis and changes in DNMT1 and DNMT3b expression suggest potential mechanisms underlying effective brachytherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of brachytherapy on NF-κB and VEGF in gastric carcinoma xenografts.

Iodine-125 (125I) seed irradiation can be used as an important supplementary treatment for unresectable advanced gastric cancer. However, the radiobiological mechanism underlying brachytherapy remains unclear. Therefore, we investigated the influence of continuous and low-energy 125I irradiation on the cell cycle distribution, apoptosis, expression of NF-κB and VEGF and tumor growth in a human ...

متن کامل

125I irradiation suppresses cell viability and inhibits cell invasiveness of gastric cancer KATO-III and MKN45 cells. Further mechanistic analysis suggested the involvement of microRNA (miR)-181c in the inhibitory effects induced by 125I irradiation. Methylated DNA immunoprecipitation

Iodine-125 (125I) seed implantation has been widely used for the treatment of unresectable advanced tumors. However, the molecular mechanisms underlying the tumor-suppressive effects of 125I irradiation have not been fully elucidated. The present study demonstrated that 125I irradiation suppresses cell viability and inhibits cell invasiveness of gastric cancer KATO-III and MKN45 cells. Further ...

متن کامل

125I seed irradiation induces up-regulation of the genes associated with apoptosis and cell cycle arrest and inhibits growth of gastric cancer xenografts

BACKGROUND Iodine 125 (125I) seed irradiation can be used as an important supplementary treatment for unresectable advanced gastric cancer. Here, we aim to comprehensively elucidate the biological effects induced by 125I seed irradiation in human gastric cancer xenograft model by using global expression and DNA methylation analyses. METHODS The 48 mice bearing NCI-N87 gastric cancer xenograft...

متن کامل

The biological effect of 125I seed continuous low dose rate irradiation in CL187 cells

BACKGROUND To investigate the effectiveness and mechanism of 125I seed continuous low-dose-rate irradiation on colonic cell line CL187 in vitro. METHODS The CL187 cell line was exposed to radiation of 60Cogamma ray at high dose rate of 2 Gy/min and 125I seed at low dose rate of 2.77 cGy/h. Radiation responses to different doses and dose rates were evaluated by colony-forming assay. Under 125I...

متن کامل

Radioactive 125I Seed Inhibits the Cell Growth, Migration, and Invasion of Nasopharyngeal Carcinoma by Triggering DNA Damage and Inactivating VEGF-A/ERK Signaling

Although radiotherapy technology has progressed rapidly in the past decade, the inefficiency of radiation and cancer cell resistance mean that the 5-year survival rate of patients with nasopharyngeal carcinoma (NPC) is low. Radioactive (125)I seed implantation has received increasing attention as a clinical treatment for cancers. Vascular endothelial growth factor-A (VEGF-A) is one of the most ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011